Invited review Cysteine proteases of malaria parasites
نویسنده
چکیده
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway. q 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Macromolecular inhibitors of malarial cysteine proteases —An invited review
There are evidences indicating that cysteine proteases play an essential role in malaria parasites; therefore, an obvious area of investigation is the inhibition of these enzymes to treat malaria. Small cysteine protease inhibitors of malaria are well studied, but macromolecular nature of inhibitor is a new field to explore. In malarial cysteine proteases, there are macromolecular endogenous in...
متن کاملProteases of malaria parasites: new targets for chemotherapy.
The increasing resistance of malaria parasites to antimalarial drugs is a major contributor to the reemergence of the disease as a major public health problem and its spread in new locations and populations. Among potential targets for new modes of chemotherapy are malarial proteases, which appear to mediate processes within the erythrocytic malarial life cycle, including the rupture and invasi...
متن کاملGene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum.
Erythrocytic malaria parasites degrade hemoglobin in an acidic food vacuole to acquire free amino acids and maintain parasite homeostasis. Hemoglobin hydrolysis appears to be a cooperative process requiring cysteine proteases (falcipains) and aspartic proteases (plasmepsins), but the specific roles of different enzymes in this process are unknown. We previously showed that falcipain-2 is a majo...
متن کاملAntimalarial synergy of cysteine and aspartic protease inhibitors.
It has been proposed that the Plasmodium falciparum cysteine protease falcipain and aspartic proteases plasmepsin I and plasmepsin II act cooperatively to hydrolyze hemoglobin as a source of amino acids for erythrocytic parasites. Inhibitors of each of these proteases have potent antimalarial effects. We have now evaluated the antimalarial effects of combinations of cysteine and aspartic protea...
متن کاملIdentification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax.
Cysteine proteases play important roles in the life cycles of malaria parasites. Cysteine protease inhibitors block haemoglobin hydrolysis and development in Plasmodium falciparum, suggesting that the cysteine proteases of this major human pathogen, termed falcipains, are appropriate therapeutic targets. To expand our understanding of plasmodial proteases to Plasmodium vivax, the other prevalen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004